首页> 外文OA文献 >Analisys of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems
【2h】

Analisys of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems

机译:哈密​​顿边界值方法的一种分析方法(HBVms):一类   能量守恒Runge-Kutta方法的数值解法   多项式哈密顿系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One main issue, when numerically integrating autonomous Hamiltonian systems,is the long-term conservation of some of its invariants, among which theHamiltonian function itself. For example, it is well known that classicalsymplectic methods can only exactly preserve, at most, quadratic Hamiltonians.In this paper, a new family of methods, called "Hamiltonian Boundary ValueMethods (HBVMs)", is introduced and analyzed. HBVMs are able to exactlypreserve, in the discrete solution, Hamiltonian functions of polynomial type ofarbitrarily high degree. These methods turn out to be symmetric, preciselyA-stable, and can have arbitrarily high order. A few numerical tests confirmthe theoretical results.
机译:在数值上整合自治哈密顿系统时,一个主要问题是其某些不变量的长期守恒,其中包括哈密顿函数本身。例如,众所周知,经典的分形方法最多只能精确地保留二次哈密顿量。在本文中,引入并分析了一个新的方法族,称为“哈密顿边界值方法(HBVM)”。 HBVM能够在离散解决方案中精确保留任意高阶多项式的哈密顿函数。这些方法证明是对称的,精确地是A稳定的,并且可以具有任意高阶。一些数值测试证实了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号